
Theoret. Chim. Acta (Berl.) 53, 165-173 (1979) 

THEORETICA C H I M I C A  ACTA 

�9 by Springer-Verlag 1979 

Evaluation of Fourier Transform of Two-Center Charge 
Distribution for Arbitrary Slater-Type Orbitals 

Carla Guidotti 

Laboratorio di Chimica Quantistica ed Energetica Molecolare del CNR, Via Risorgimento 35, 
1-56100 Pisa, Italy 

Giovanni P. Arrighini and Francis Marinelli* 

Istituto di Chimica Fisica dell'Universit/L Via Risorgimento 35, 1-56100 Pisa, Italy 

Fourier transform of two-center charge distributions corresponding to arbitrary 
Slater-type orbitals are evaluated by a Gaussian quadrature procedure without 
any preliminary series expansion of the integrand. Convergence and accuracy of 
the method are discussed and illustrated. 

Key words: Two-center Slater-type orbital product, Fourier transform of ~ 

1. Introduction 

Matrix elements of the form <x.lexp ( i q ' r ) l x e )  involving a set of given basis func- 
tions {X} are important ingredients for quantum-mechanical calculations of 
dynamical effects of atoms and molecules. 

Elastic and inelastic cross sections for collisions of fast electrons with molecular 
targets [1] and form factors for coherent X-ray diffraction from atoms or molecules 
[2-4] are only two examples where the above cited matrix elements play a role. 

In addition to this clear reason of importance, which stems directly from the 
inspection of the analytic expressions for the relevant cross sections, we point out 
that the availability of the matrix (X1 exp ( iq .r)I  x)  may offer a way for generalizing 
to high orders our knowledge of the first multipole moments associated with an 
arbitrary molecular charge distribution. In fact, if we take into account that any 
moment of the charge distribution can be generated starting from the identity 

[!Vq. �9 �9 V~) exp (iq.r)]~=o = ( i )n(r . . .  r), (1) 

n-times n-times 
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and some efficient interpolation scheme can be devised so as to provide the explicit 
q-dependence of the matrix (x]exp (iq.r)lx), then from Eq. (1) we derive the desired 
multipole moment. 

Standard choices for the basis {:(} consist of Gaussian- or Slater-type orbitals, 
centered at the various nuclei of the molecule of interest. In both cases, approaches 
have been suggested for the evaluation of the matrix element (x~lexp (iq.r)lxB), 
usually referred to as Fourier transform of the distribution X*XB [5]. By this short 
paper we propose to extend the list of contributions already available for the case 
where (X} is a set of Slater-type orbitals, surely the more complicated one. Our pro- 
cedure follows very closely that put forward by Bonham et al. [6, 7] for the simplest 
two-center distribution, i.e. lsAlsz, the Fourier transform of any other distribution 
being then generated from the simplest one by differentiation with respect to proper 
parameters. Even if the emphasis of the present paper is on the computational con- 
venience of such an approach with respect to others possible, we shall briefly dwell 
on the formal part (Sect. 2), devoting the last section to a presentation and dis- 
cussion of  typical results. 

2. Mathematical Apparatus 

Let us consider the general expression for Fourier transform of a product of Slater- 
type orbitals (STO's), 

I~B(q) = f x*(rA) exp (iq.r)xe(%) dr, (2) 

where x~(rA) and xB(rB) are STO's centered at A and B respectively and the r vector 
appearing in exp (iq.r) is referred to an arbitrary origin 0. Since exp (iq.r) can 
trivially be translated from the point 0 to the center A or B, we shall limit our atten- 
tion to the following integrals, 

= f x*(rA) exp (iq. rA)x,(rB) dr. (3) I~,(q) 

Considering, for the moment, s-type STO's only, and making use of the integral 
representation [6] 

rff -1 exp ( -  ~'rB) = (1/2~r2)(- 0/0~') ~" f dk exp (ik. rB)/(k 2 + ~'~). (4) 

Equation (3) can be cast into the form 

I,~A.,r = [(2~) z'~ + ~(2~') 2'~' + ~/(2n)! (2n')!1~'2(1/4rr)(1/2rr 2) 

. ( -~/e~')" ' f  r~, -~ exp ( - ~ r  A q- iq.ra) dr^ 

f dk exp (ik.r~)/(k 2 + ~,2). (5) • 

J 
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After  t ranslat ion of  the factor  exp (ik.rB) f rom the center B to A, the integral in 
Eq. (5) can be rewrit ten as 

f d k e x p ( - i k . R ) / ( k  2 + ~'2) t drAr~-lexp [--~rA + i(q + k).rA] 

( R  = r~  - r~).  

The integrat ion in rA can readily be carried out:  

f drAr~ -1 exp [--~rA + i(q + k)'rA] = 4rr(--~/a~)~[1/(~ ~ + Iq + k12)]; 

moreover ,  f rom the Feynman  identity (ab)- 1 = f~ d~[a + (b - a)c~]-2 and the sub- 

stitution k = p - ~q, we m a y  t rans form the expression in Eq. (5) as follows: 

I, sA,,'~,(q) : [(2~) ~" + 1(2~') z"' + 1/(2n)! (2n')!]1/2(1/27r2)(-- 1)" +~' 

(e"+"'/eC"eC'"') foldO, exp (i,~q.R) f dp exp (-ip.r)/[p 2 + M(c0] 2 

(6) 
where M(c 0 = ~,2 + (~2 _ ~,2)c ~ + q2~( 1 _ c0" 

In Eq. (6) the p- integrat ion can be per formed which leads to the final result 

I"~A,"'sB(P) = ( 1 I 2 ) [ ( 2 ~ )  =" + 1(2~')2"' + ~ l ( 2 n )  ! (2n') ! 1~/2( - -  1 )~ + "'. ( a  ~ + "' t a ~ . a ~  '~' ) 

1 , 1  

x i dcc exp (ic~q.R - R[M(cO]*I2)I[M(~)]IlL (7) 
d 0 

All integrals involving s-type STO's  can therefore be obtained by carrying out in 
Eq. (7) the appropr ia te  number  of  differentiations with respect to ~ or ~'. Explicit 
fo rmulae  are easily obta inable  for each case, even though  at the expense of  some- 
what  long and tedious work.  

Passing to the case of  orbitals associated with higher spherical harmonics ,  the 
relevant formulae  can be derived f rom Eq. (7) by differentiation with respect to 
appropr ia te  parameters ,  as we shall see in a moment .  

I f  a local coordinate  f r amework  is assumed,  whose z-axis lies along the R vector,  all 
integrals involving STO's  with l = I, 2 . . . .  are obtained in a fairly simple way. 
For  instance, an integral containing a npx orbital  centered at A becomes 

I,~A,~,~(q) = [3(2~) 2" + 1(2~')="' + ~/(2n)! (2n')!]*/2(1 f47r) 

�9 j -A "B ~Aexp( - -~ rA  +iq'rA--  ~'r~)dr 

= [3(2~) 2" + ~(2~') 2"'+ 1/(2n)! (2n')11~/2(1/4~r)(1/i) 

�9 (e/Oq,:)f r An-2rB"'-~ exp (-~rA + iq'rA - -  ~'rs) dr 

1)]z/2( ~/~q~) f X(~- l~(r a) exp (iq.r a)x~,~(rs) dT, ~ 2 ~ i [ 3 ~ 2 n ~ 2 n  
d 
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which involves a simple differentiation with respect to the component qx. If the 
orbital with l = 1, 2 . . . .  is centered at B, it is sufficient to consider that, in the 
chosen local reference system, xB = xA, YB = YA, z~ = z A -  R for obtaining 
formulae for any type of integrals. It should not be surprising that the expressions 
for integrals involving STO's associated with higher principal and azimuthal quan- 
tum numbers become rapidly complicated; for instance, the matrix element 
(2pzA l exp (iq. rA) 13dz~2) involves eight contributions : 

(2P~A[exp (iq'rA)13d~2) = _ ( 4 ! / 3 ~ / 2 ) ( ~ )  z/2 

•  

+ (iR/2)(q~ + q~ - 2q~) da(1 - ~)%dFa(a) 

-(q~/2)(q~ + q~ - 2q~) d~(1 - a)%dF4(~) 

+ iR ~ a~(1 - . ) ~ F ~ ( ~ )  - R %  

• a~(1 - ~ ) ~ F ~ ( ~ )  - 2 J R  

• a~(1 - ~ ) ~ F ~ ( ~ )  + 2R~q~ 

x d~(l - a)aaaF2(a) + 2iRq~ 

x f ]  d a ( 1 -  a)%~3F3(~)} 

where we have put 

F,,(a) = (2/7r) exp (iaq.R)R2'~+3/[RV'-M-~)] '*+ 1 

• {[(=/2)/(R~/M(~,))p ~. K(. + ~)+.~[RVM(,~)]}, 

[(~/2)/(R~/~(~))]l12K(,~+ 1)+ I/2[RX/M-~(~)] being a modified spherical Bessel function 
of the third kind [8]. 

Integrals with increasing values of n and l involve higher and higher numbers of 
contributions: for instance, integrals of the form (5d~lexp (iq.r)]5d~) require 56 
contributions. In any case, the integrals to be evaluated by numerical quadrature 
are of the following general form: 

.Y"~'~ = da(1 - a)m~'~F~(~). (8) 

3. Results 

The problem we are faced with is the evaluation of the integral appearing in Eq. (8). 
Unfortunately we are unable to calculate it in a closed analytic form even for the 
simplest case I1~A1~, and recourse to numerical quadrature is needed (eventually 
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preceded  by  sui table manipu la t ions  o f  the in tegrand  [5] in o rder  to make  it as 

smoo th  as possible).  As  far  as we are concerned,  we have found  convenient  a 

s t ra igh t forward  quadra tu re  based  on the form of  Eq. (8), by s imply choos ing  a 
p r o p e r  subdivis ion o f  the in tegra t ion  range in sub-intervals  a long with an op t imal  
in tegra t ion  po in t  grid. Thus,  if  wi thin the  sub-interval  (aj, bj) we pu t  ~j(t) = 
(aj + bj)/2 + (bj - aj)t/2, then Eq. (8) becomes 

f2 Y ~  = ~ (b~ - aj)/2 dr(1 - aj(t))ma~(t)Fk(~j(t))  
1 

= a j  (1  - (9) 
] s 

where Aj = bj - aj  and {H~} is the required set o f  Gauss  quadra tu re  weights [9]. 

A pre l iminary  man ipu la t ion  o f  the in tegrand a long the lines suggested in Ref. [5] 

so as to get r id o f  t roubles  arising f rom its osci l la tory  na ture  in our  experience did  
not  prove  to be prac t ica l ly  convenient  for STO's  o f  a rb i t r a ry  pr incipal  quan tum 

numbers .  In  fact, an annoy ing  feature o f  our  a t tempts  founded  on the Lommel  
series expans ion  o f  the in tegrand [5] was tha t  a cons iderab ly  increasing number  o f  
terms had  to be in t roduced  in order  to ob ta in  a sat isfying convergence.  

On the o ther  hand,  the p rocedure  based  on the direct  numer ica l  quadra tu re ,  Eq. 
(9), requires tha t  bo th  the number  of  sub-intervals  and  in tegra t ion  grid are prefixed 

so as to come in any case to a reasonable  compromise  between accuracy  and econ- 
omy,  a goal  a t ta ined  only on empir ica l  grounds.  

Table 1. Matrix elements of the type (lsa]exp (iq. rA)[ ls~3) evaluated either by direct quadrature 
or by Monkhorst et al. procedure: a comparison (0 = cos -z [q.R/[qlR]) 

CA = 1.2, ~n = 5.7, R = 2.0 a.u. 

Our procedure Ref. [5] 
Re (I) Im (I) Re (1) Im (I) 

Iq[ = 4.0 0 = 0.0 0.285215(- 1) -0.114950(- 1) 0.28521(- 1) -0 .11495(-  1) 
Iql = 5.0 0 = ~r/4 0.200005(- 1) 0.106220(- 1) 0.20001(- 1) 0.10622(- 1) 
[ql = 6.0 0 = ~r/4 -0.513332(-2) 0.150802(-1) -0 .51335(-2)  0.15080(-1) 
Iql = 7.0 0 = 7r/4 -0.110622(-1) -0.197652(-2) -0.11062(-1)  -0 .19764(-2)  
Iql = 8.0 0 = 7r/4 0.244479(-3) -0.800233(-2) 0.24453(-3) -0 .80026(-2)  
Iq[ = 9.0 0 = ~r/4 0.574536(-2) -0.653660(-3) 0.57454(-2) -0 .65364(-3)  
Iq[ = t0.0 0 = ~r/4 0.107503(-2) 0.410165(-2) 0.10750(-2) 0.41016(-2) 

R = I  .5 a.u., 0 = 0.0, ]q[ = 4.0 a.u. 

Our procedure Ref. [5] 
Re (I) Im (I) Re (I) Im (I) 

~A = 1.2 ~B = 1.2 0.627941(-2) -0.895108(-3) 0.627861(-2) -0.894995(-3) 
~A = 1.2 ~ = 0.5 0.543222(-2) -0.341204(-2) 0.542674(-2) -0.347684(-2) 
CA = 1.2 ~n = 2.0 0.124710(-- 1) 0.124633(-- 1) 0.124689(-- 1) 0.124620(- 1) 
CA = 0.5 ~B = 0.5 0.137431(--2) --0.195903(--3) 0.137279(--2) --0.195687(--3) 
~A = 0.5 ~ = 2.0 0.142290(--1) --0.104122(--1) 0.142124(--1) --0.t03950(--1) 
~A = 2.0 ~B = 2.0 0.721025(--4) 0.102780(--4) 0.720884(--4) 0.102760(--4) 
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In Table 1 we report some typical values for integrals of the type fdr l sA(rA)exp  

(iq.rA)ls~(rB), corresponding to a given pair of orbital exponents ~ and different 
q's (first part of the table) or a fixed q and different pairs of ~ values. The real part 
Re (I) and the imaginary part Im (I) of the various integrals evaluated by our pro- 
cedure are compared with those obtained by the Monkhorst et al. procedure [5]: 
in particular, the entries listed under the heading "Ref.  [5]" in the first part of the 
table are easily deduced starting from Table 1 of Ref. [5]. The remarkable agree- 
ment between the two approaches needs no comment; as an element of critical 
assessment, however, we emphasize that in our experience the computational time 
is definitely favourable to the direct numerical quadrature procedure, with respect 
to the Monkhorst et al. procedure, as proved by the average computational time 
per integral which passes from ~_0.22 see to _0.11 sec (on IBM 370/158). 

As pointed out in Ref. [5], in many cases (depending on the values of the orbital 
exponents ~A, ~B, internuclear separation R and q vector), the value of the integrals 
3-~ ", Eq. (9), is severely controlled by the contributions arising from the first and/or 
the last sub-interval. The convergence of the integration procedure has therefore 
been probed by varying in a suitable way either the width A of such sub-intervals or 
the number N of integration points there used. Since most matrix elements consist 
of several integrals -Y-~", and these converge for different values of N and/or A, it is 
convenient to use proper N and A values for each Y~" in order to minimize the 
computational time. 

The matrix elements reported in Table 2 display some peculiar features arising 
from the chosen quantum numbers n, l, orbital exponent ~ and ]q]. (N, A1) denotes 
respectively the overall integration point number and the width adopted for the 
first or last sub-interval, as long as a single choice is sufficient; (N', A[) has an 
entirely analogous meaning when more slowly convergent integrals Y ~  occur. The 
inspection of Table 2 shows how a satisfying convergence is assured in most cases 
by a relatively acceptable point number. 

In Table 3 we present matrix elements I~A~AmA;~B~Bm~(q) corresponding to limit values 
of R and tql, so as they reduce to known or easily evaluated quantities. As R -+ 0, 
the above matrix elements approach the corresponding one-center ones, which are 
easily expressed in simple analytical form. On the other hand, as ]ql --> 0, limlq I_~0 x 
InA~AmA:nBtr~mB(q ) ---~ SnAIAmA;nlflBmB, the overlap integral between the same pair of 
STO's. The clearly conformal behaviour of the reported quantities is a further 
element of confidence in the numerical procedure suggested in this paper. 
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